CURRICULUM I TO VIII:B.TECH ROBOTICS AND AUTOMATION

Every course of B. Tech. Program shall be placed in one of the nine categories as listed in table below.

Sl. No	Category	Code	Credits
1	Humanities and Social Sciences including Management courses	HMC	8
2	Basic Science courses	BSC	26
3	Engineering Science Courses	ESC	22
4	Program Core Courses	PCC	76
5	Program Elective Courses	PEC	15
6	Open Elective Courses	OEC	3
7	Project work and Seminar	PWS	10
8	Mandatory Non-credit Courses (P/F) with grade	MNC	-----
9	Mandatory Student Activities (P/F)	MSA	2
	Total Mandatory Credits	$\mathbf{1 6 2}$	
10	Value Added Course (Optional)	VAC	20

No semester shall have more than six lecture-based courses and two laboratory and/or drawing/seminar/project courses in the curriculum. Semester-wise credit distribution shall be as below:

Sem	1	2	3	4		5	6	7	8	Total
Credits	17	21	22	22		23	23	15	17	160
Activity Points	50				50					---
Credits for Activity	2									2
G.Total										162

Basic Science Courses: Maths, Physics, Chemistry, Biology for Engineers, Life Science etc
Engineering science courses: Basic Electrical, Engineering Graphics, Programming, Workshop, Basic Electronics, Basic Civil, Engineering Mechanics, Mechanical Engineering, Thermodynamics, Design Engineering, Materials Engineering etc.
Humanities and Social Sciences including Management courses: English, Humanities, Professional Ethics, Management, Finance \& Accounting, Life Skills, Professional Communication, Economics etc
Mandatory non-credit courses: Sustainable Engineering, Constitution of India/Essence of Indian Knowledge Tradition, Industrial Safety Engineering, disaster management etc.

Course Code and Course Number

Each course is denoted by a unique code consisting of three alphabets followed by three numerals like ECL201. The first two letter code refers to the department offering the course. EC stands for course in Electronics \& Communication, course code MA refers to a course in Mathematics, course code ES refers to a course in Engineering Science etc. Third letter stands for the nature of the course as indicated in the Table 1.

Table 1: Code for the courses

Code	Description
T	Theory based courses (other the lecture hours, these courses can have tutorial and practical hours, e.g., L-T-P structures 3-0-0, 3-1-2, 3-0-2 etc.)
L	Laboratory based courses (where performance is evaluated primarily on the basis of practical or laboratory work with LTP structures like 0-0-3, 1-0-3, 0-1-3 etc.)
N	Non-credit courses
D	Project based courses (Major, Mini Projects)
Q	Seminar Courses

Course Number is a three digit number and the first digit refers to the Academic year in which the course is normally offered, i.e. 1, 2, 3, or 4 for the B. Tech. Programme of four year duration. Of the other two digits, the last digit identifies whether the course is offered normally in the odd (odd number), even (even number) or in both the semesters (zero). The middle number could be any digit. ECL 201 is a laboratory course offered in EC department for third semester, MAT 101 is a course in Mathematics offered in the first semester, EET 344 is a course in Electrical Engineering offered in the sixth semester, PHT 110 is a course in Physics offered both the first and second semesters, EST 102 is a course in Basic Engineering offered by one or many departments. These course numbers are to be given in the curriculum and syllabi.

Departments

Each course is offered by a Department and their two-letter course prefix is given in Table 2
Table 2: Departments and their codes

$\begin{aligned} & \text { SL } \\ & \text { No } \end{aligned}$	Department	Course Prefix	$\begin{aligned} & \text { SL } \\ & \text { No } \end{aligned}$	Department	Course Prefix
1	Aeronautical Engineering	AO	23	Electronics and Communication Engineering	EC
2	Agriculture Engineering	AG	24	Electronics and Computer Engineering	ER
3	Applied Electronics and Instrumentation	AE	25	Electrical and Computer Engineering	EO
4	Artificial Intelligence	AI	26	Electrical and Electronics Engineering	EE
5	Artificial Intelligence and Data Science	AD	27	Food Technology	FT
6	Artificial Engineering and Machine Learning	AM	28	Humanities	HU
7	Automobile Engineering	AU	29	Industrial Engineering	IE
8	Biomedical Engineering	BM	30	Information Technology	IT
9	Biotechnology	BT	31	Instrumentation \& Control	IC
10	Chemical Engineering	CH	32	Mandatory Courses	MC
11	Chemistry	CY	33	Mathematics	MA
12	Civil Engineering	CE	34	Mechanical Engineering	ME
13	Civil and Environmental Engineering	CN	35	Mechatronics	MR
14	Computer Science and Business Systems	CB	36	Metallurgy	MT
15	Computer Science and Design	CX	37	Mechanical (Auto)	MU
16	Computer Science and Engineering	CS	38	Mechanical (Prod)	MP
17	Computer Science and Engineering (Artificial Intelligence)	CA	39	Naval \& Ship Building	SB
18	Computer Science and Engineering (Artificial Intelligence and Machine Learning)	CM	40	Physics	PH
19	Computer Science and Engineering (Data Science)	CD	41	Polymer Engineering	PO
20	Computer Science and Engineering (Cyber Security)	CC	42	Production Engineering	PE
21	Cyber Physical Systems	CP	43	Robotics and Automation	RA
22	Electronics \& Biomedical	EB	44	Safety \& Fire Engineering	FS

SEMESTER I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 101	LINEAR ALGEBRA AND CALCULUS	3-1-0	4	4
$\begin{gathered} \hline \text { B } \\ 1 / 2 \end{gathered}$	$\text { PHT } 110$	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \text { C } \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 101	LIFE SKILLS	2-0-2	4	--
$\begin{gathered} \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
TOTAL				23/24 *	17

*Minimum hours per week
Note: To make up for the hours lost due to induction program, one extra hour may be allotted to each course

SEMESTER II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT 102	VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS	3-1-0	4	4
$\begin{gathered} \hline \text { B } \\ 1 / 2 \end{gathered}$	$\text { PHT } 110$	ENGINEERING PHYSICS B	3-1-0	4	4
	CYT 100	ENGINEERING CHEMISTRY	3-1-0	4	4
$\begin{gathered} \text { C } \\ 1 / 2 \end{gathered}$	EST 100	ENGINEERING MECHANICS	2-1-0	3	3
	EST 110	ENGINEERING GRAPHICS	2-0-2	4	3
$\begin{gathered} \hline \mathrm{D} \\ 1 / 2 \end{gathered}$	EST 120	BASICS OF CIVIL \& MECHANICAL ENGINEERING	4-0-0	4	4
	EST 130	BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING	4-0-0	4	4
E	HUN 102	PROFESSIONAL COMMUNICATION	2-0-2	4	--
F	EST 102	PROGRAMMING IN C	2-1-2	5	4
$\begin{gathered} \hline \mathrm{S} \\ 1 / 2 \end{gathered}$	PHL 120	ENGINEERING PHYSICS LAB	0-0-2	2	1
	CYL 120	ENGINEERING CHEMISTRY LAB	0-0-2	2	1
$\begin{gathered} \hline \mathrm{T} \\ 1 / 2 \end{gathered}$	ESL 120	CIVIL \& MECHANICAL WORKSHOP	0-0-2	2	1
	ESL 130	ELECTRICAL \& ELECTRONICS WORKSHOP	0-0-2	2	1
		TOTAL		28/29	21

NOTE:

1. Engineering Physics A and Engineering Chemistry shall be offered in both semesters. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Engineering Physics A in SI and Engineering Chemistry in S2 \& vice versa. Students opting for Engineering Physics A in a semester should attend Physics Lab in the same semester and students opting for Engineering Chemistry in one semester should attend Engineering Chemistry Lab in the same semester.
2. Engineering Mechanics and Engineering Graphics shall be offered in both semesters. Institutions can advise students belonging to about 50\% of the number of branches
in the Institution to opt for Engineering Mechanics in SI and Engineering Graphics in S2 \& vice versa.
3. Basics of Civil \& Mechanical Engineering and Basics of Electrical \& Electronics Engineering shall be offered in both semesters. Basics of Civil \& Mechanical Engineering contain equal weightage for Civil Engineering and Mechanical Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to branches of AEI, EI, BME, ECE, EEE, ICE, CSE, IT, RA can choose this course in S1.
Basics of Electrical \& Electronics Engineering contain equal weightage for Electrical Engineering and Electronics Engineering. Slot for the course is D with CIE marks of 25 each and ESE marks of 50 each. Students belonging to AERO, AUTO, CE, FSE, IE, ME, MECHATRONICS, PE, METTULURGY, BT, BCE, CHEM, FT, POLY can choose this course in S1. Students having Basics of Civil \& Mechanical Engineering in one semester should attend Civil \& Mechanical Workshop in the same semester and students having Basics of Electrical \& Electronics Engineering in a semester should attend Electrical \& Electronics Workshop in the same semester.

4. LIFE SKILLS

Life skills are those competencies that provide the means for an individual to be resourceful and positive while taking on life's vicissitudes. Development of one's personality by being aware of the self, connecting with others, reflecting on the abstract and the concrete, leading and generating change, and staying rooted in time-tested values and principles is being aimed at. This course is designed to enhance the employability and maximize the potential of the students by introducing them to the principles that underlie personal and professional success, and help them acquire the skills needed to apply these principles in their lives and careers.
5. PROFESSIONAL COMMUNICATION

Objective is to develop in the under-graduate students of engineering a level of competence in English required for independent and effective communication for their professional needs. Coverage: Listening, Barriers to listening, Steps to overcome them, Purposive listening practice, Use of technology in the professional world. Speaking, Fluency \& accuracy in speech, Positive thinking, Improving selfexpression, Tonal variations, Group discussion practice, Reading, Speed reading practice, Use of extensive readers, Analytical and critical reading practice, Writing Professional Correspondence, Formal and informal letters, Tone in formal writing, Introduction to reports. Study Skills, Use of dictionary, thesaurus etc., Importance of contents page, cover \& back pages, Bibliography, Language Lab.

SEMESTER III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT201	PARTIAL DIFFERENTIAL EQUATION AND COMPLEX ANALYSIS	$3-1-0$	4	4
B	RAT 201	PROCESSING AND PROPERTIES OF MATERIALS	$4-0-0$	4	4
C	RAT 203	ELECTRONIC DEVICES AND CIRCUITS	$3-1-0$	4	4
D	RAT 205	DIGITAL ELECTRONICS	$3-1-0$	4	4
E	EST 200	DESIGN \& ENGINEERING	$2-0-0$	2	2
	HUT 200	PROFESSIONAL ETHICS	$2-0-0$	2	2
F	MCN 201	SUSTAINABLE ENGINEERING	$2-0-0$	2	--
S	RAL 201	MACHINE DRAWING AND SOLID MODELLING LAB	$0-0-3$	3	2
T	RAL 203	ELECTRONIC CIRCUITS AND DIGITAL ELECTRONICS LABORATORY	$0-0-3$	3	2
R/M	VAC	REMEDIAL/MINOR COURSE	$3-1-0$	$4 *$	4
		TETAL	$\mathbf{2 6 / 3 0}$	$\mathbf{2 2 / 2 6}$	

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions shall keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	MAT202	PROBABILITY, STATISTICS AND NUMERICAL METHODS	$3-1-0$	4	4
B	RAT 202	KINEMATICS AND DYNAMICS OF MECHANISMS	$3-1-0$	4	4
C	RAT 204	MANUFACTURING PROCESSES	$3-1-0$	4	4
D	RAT 206	MICROCONTROLLERS AND EMBEDDED SYSTEMS	$3-1-0$	4	4
E $1 / 2$	EST 200	DESIGN \& ENGINEERING	$2-0-0$	2	2
	HUT 200	MCN 202	PROFESSIONAL ETHICS	$2-0-0$	2
F CONSTITUTION OF INDIA	$2-0-0$	2	--		
S	RAL 202	MANUFACTURING AND PROTOTYPING LAB	$0-0-3$	3	2
T	RAL 204	MICROCONTROLLERS AND EMBEDDED SYSTEMS LAB	$0-0-3$	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	$4 *$	4
		TOTAL	$\mathbf{2 6 / 3 0}$	$\mathbf{2 2 / 2 6}$	

NOTE:

1. Design \& Engineering and Professional Ethics shall be offered in both S3 and S4. Institutions can advise students belonging to about 50% of the number of branches in the Institution to opt for Design \& Engineering in S3 and Professional Ethics in S4 \& vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor course (Thursdays from 3 to 5 PM and Fridays from 2 to 4 PM). If a student does not opt for minor programme, he/she can be given remedial class.

SEMESTER V

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 301	INTRODUCTION TO ROBOTICS	$3-1-0$	4	4
B	RAT 303	SOLID MECHANICS	$3-1-0$	4	4
C	RAT 305	INDUSTRIAL AUTOMATION	$3-1-0$	4	4
D	RAT 307	CONTROL SYSTEMS	$3-1-0$	4	4
E $1 / 2$	HUT 300	 FOREIGN TRADE	$3-0-0$	3	3
	HUT 310	MANAGEMENT FOR ENGINEERS	$3-0-0$	3	3
F	MCN 301	DISASTER MANAGEMENT	$2-0-0$	2	--
S	RAL 331	AUTOMATION LAB	$0-0-3$	3	2
T	RAL 333	ROBOT OPERATING SYSTEM LAB	$0-0-3$	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	$4 *$	4
	TOTAL	$\mathbf{2 7 / 3 1}$	$\mathbf{2 3 / 2 7}$		

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50\% of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 3 to 5 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.

SEMESTER VI

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 302	DESIGN OF MACHINE ELEMENTS	3-1-0	4	4
B	RAT 304	ELECTRIC DRIVES AND CONTROL	3-1-0	4	4
C	RAT 306	SIGNALS AND SYSTEMS	3		4
D	RAT XXX	PROGRAM ELECTIVEI	2-1-0	3	3
$\begin{array}{\|l\|} \hline E \\ 1 / 2 \\ \hline \end{array}$	HUT 300	INDUSTRIAL ECONOMICS \& FOREIGN TRADE	3-0-0	3	3
	HUT 310	MANAGEMENT FOR ENGINEERS	3-0-0	3	3
F	RAT 308	COMREHENSIVE COURSE WORK	1-0-0	1	1
S	RAL 332	ROBOTICS LAB	0-0-3	3	2
T	RAD 334	MINIPROJECT/CORE LAB	0-0-3	3	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	3-1-0	4*	4
		TOTAL		25/29	23/27

PROGRAM ELECTIVE I

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
D	RAT 312	SENSORS AND TRANSDUCERS	2-1-0	3	3
	RAT 322	ROBOTIC CONTROL SYSTEMS	2-1-0		
	RAT 332	FLUID POWER AUTOMATION	2-1-0		
	RAT 342	MECHANICAL MEASUREMENTS AND METROLOGY	2-1-0		
	RAT 352	ENGINEERING OPTIMIZATION	2-1-0		
	RAT 362	COMMUNICATIONS NETWORKS	2-1-0		
	RAT 372	SOFT COMPUTING TECHNIQUES	2-1-0		

NOTE:

1. Industrial Economics \& Foreign Trade and Management for Engineers shall be offered in both S5 and S6. Institutions can advise students belonging to about 50\%
of the number of branches in the Institution to opt for Industrial Economics \& Foreign Trade in S5 and Management for Engineers in S6 and vice versa.
2. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Tuesdays from 3 to 5 PM and Wednesdays from 2 to 4 PM). If a student does not opt for minor/honours programme, he/she can be given remedial class.
3. Comprehensive Course Work: The comprehensive course work in the sixth semester of study shall have a written test of 50 marks. The written examination will be of objective type similar to the GATE examination and will be conducted by the University. Syllabus for comprehensive examination shall be prepared by the respective BoS choosing the above listed 5 core courses studied from semester 3 to 5. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practicing questions based on the core courses listed in the curriculum.
4. Mini project: It is introduced in sixth semester with a specific objective to strengthen the understanding of student's fundamentals through effective application of theoretical concepts. Mini project can help to boost their skills and widen the horizon of their thinking. The ultimate aim of an engineering student is to resolve a problem by applying theoretical knowledge. Doing more projects increases problemsolving skills. Students should identify a topic of interest in consultation with Faculty/Advisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design/fabrication or develop codes/programs to achieve the objectives. Demonstrate the novelty of the project through the results and outputs. The progress of the mini project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The product has to be demonstrated for its full design specifications. Innovative design concepts, reliability considerations, aesthetics/ergonomic aspects taken care of in the project shall be given due weight. The internal evaluation will be made based on the product, the report and a viva- voce examination, conducted internally by a 3 member committee appointed by Head of the Department comprising HoD or a senior faculty member, Academic coordinator for that program, project guide/coordinator.

Total marks: 150, CIE 75 marks and ESE 75 marks
Split up for CIE
Attendance :10
Guide : 15
Project Report : 10

Evaluation by the Committee (will be evaluating the level of completion and demonstration of functionality/specifications, presentation, oral examination, work knowledge and involvement) : 40

SEMESTER VII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 401	ALGORITHMS AND DATA STRUCTURES	$2-0-2$	4	3
B	RAT XXX	PROGRAM ELECTIVE II	$2-1-0$	3	3
C	RAT XXX	OPEN ELECTIVE	$2-1-0$	3	3
D	MCN 401	INDUSTRIAL SAFETY ENGINEERING	$2-1-0$	3	---
S	RAL 411	ELECTRICAL DRIVES AND CONTROL LAB	$0-0-3$	3	2
T	RAQ 413	SEMINAR	$0-0-3$	3	2
U	RAD 415	PROJECT PHASE I	$0-0-6$	6	2
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE	$3-1-0$	$\mathbf{4}^{*}$	4
	TOTAL	$\mathbf{2 5 / 2 9}$	$\mathbf{1 5 / 1 9}$		

PROGRAM ELECTIVE II

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	RAT 413	MOBILE ROBOTICS	2-1-0	3	3
	RAT 423	PLC AND DISTRIBUTED CONTROL SYSTEMS	2-1-0		
	RAT 433	THEORY OF ELASTICITY	2-1-0		
	RAT 443	DESIGNING THE MECHANISMS FOR AUTOMATED MACHINES	2-1-0		
	RAT 453	TRIBOLOGY	2-1-0		
	RAT 463	FINITE ELEMENT METHODS	2-1-0		
	RAT 473	FUNDAMENTALS OF MOMENTUM, HEAT AND MASS TRANSFER	2-1-0		

OPEN ELECTIVE

The open elective is offered in semester 7. Each program should specify the courses (maximum 5) they would like to offer as electives for other programs. The courses listed below are offered by the Department of Robotics and Automation for students of other undergraduate branches offered in the college under KTU

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	RAT415	FUNDAMENTALS OF ROBOTICS	2-1-0	3	3
	RAT425	BASICS OF MOBILE ROBOTICS	2-1-0		
	RAT435	INDUSTRIAL AUTOMATION	2-1-0		
	RAT445	AI FOR ROBOTICS	2-1-0		

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12 Noon). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Seminar: To encourage and motivate the students to read and collect recent and reliable information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conference, books, project reports etc., prepare a report based on a central theme and present it before a peer audience. Each student shall present the seminar for about 20 minutes duration on the selected topic. The report and the presentation shall be evaluated by a team of faculty members comprising Academic coordinator for that program, seminar coordinator and seminar guide based on style of presentation, technical content, adequacy of references, depth of knowledge and overall quality of the report.

Total marks: 100, only CIE, minimum required to pass" 50

Attendance	$: 10$
Seminar Diary	$: 10$
Guide	$: 20$
Report	$: 20$
Presentation	$: 40$

3. Project Phase I: The course 'Project Work' is mainly intended to evoke the innovation and invention skills in a student. The course will provide an opportunity to synthesize and apply the knowledge and analytical skills learned, to be developed as a prototype or simulation. The project extends to 2 semesters and will be evaluated in the 7th and 8th semester separately, based on the achieved objectives. One third of the project credits shall be completed in 7th semester and two third in 8th semester. It is recommended that the projects may be finalized in the thrust areas of the respective engineering stream or as interdisciplinary projects. Importance should be given to address societal problems and developing indigenous technologies. The assignment to normally include:
```
Literature study/survey of published literature on the assigned topic
> Formulation of objectives
> Formulation of hypothesis/ design/ methodology
> Formulation of work plan and task allocation.
> Block level design documentation
> Seeking project funds from various agencies
> Preliminary Analysis/Modeling/Simulation/Experiment/ Design/Feasibility study
> Preparation of Phase 1 report
```

Total marks: 100, only CIE, minimum required to pass 50
Guide : 30
Interim evaluation by the Evaluation committee : 20
Final evaluation by the Evaluation committee : 30
Phase - I Report (By Evaluation committee) : 20

The evaluation committee comprises HoD or a senior faculty member, Project coordinator and project supervisor.

SEMESTER VIII

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
A	RAT 402	AI AND MACHINE LEARNING	$2-1-0$	3	3
B	RAT XXX	PROGRAM ELECTIVE III	$2-1-0$	3	3
C	RAT XXX	PROGRAM ELECTIVE IV	$2-1-0$	3	3
D	RAT XXX	PROGRAM ELECTIVE V	$2-1-0$	3	3
T	RAT 404	COMPREHENSIVE COURSE VIVA	$1-0-0$	1	1
U	RAD 416	PROJECT PHASE II	$0-0-$ 12	12	4
R/M/H	VAC	REMEDIAL/MINOR/HONOURS COURSE TOTAL	$3-1-0$	$4 *$	4

PROGRAM ELECTIVE III

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
B	RAT 414	MACHINE VISION	2-1-0	3	3
	RAT 424	BEHAVIORAL ROBOTICS	2-1-0		
	RAT 434	INDUSTRIAL MANIPULATORS	2-1-0		
	RAT 444	ROBOT MOTION PLANNING	2-1-0		
	RAT 454	CNC MACHINES	2-1-0		
	RAT 464	NONLINEAR CONTROL	2-1-0		
	RAT 474	DATA ANALYTICS FOR ENGINEERS	2-1-0		

PROGRAM ELECTIVE IV

SLOT	COURSE NO.	COURSES	L-T-P	HOURS	CREDIT
C	RAT 416	DESIGN FOR MANUFACTURING AND ASSEMBLY	$2-1-0$		
	RAT 426	NATURAL LANGUAGE PROCESSING	$2-1-0$	3	3
	RAT 436	DIGITAL CONTROL SYSTEMS	$2-1-0$		
	RAT 446	PROBABILISTIC ROBOTICS	$2-1-0$		

ROBOTICS AND AUTOMATION

	RAT 456	IOT AND APPLICATIONS	$2-1-0$		
	RAT 476	SUPERVISORY CONTROL	$2-1-0$		

PROGRAM ELECTIVE V

NOTE

1. *All Institutions should keep 4 hours exclusively for Remedial class/Minor/Honours course (Mondays from 10 to 12 and Wednesdays from 10 to 12). If a student does not opt for minor/honours programme, he/she can be given remedial class.
2. Comprehensive Course Viva: The comprehensive course viva in the eighth semester of study shall have a viva voce for 50 marks. The viva voce shall be conducted based on the core subjects studied from third to eighth semester. The viva voce will be conducted by the same three member committee assigned for final project phase II evaluation towards the end of the semester. The pass minimum for this course is 25 . The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed in the curriculum. The mark will be treated as internal and should be uploaded along with internal marks of other courses.
3. Project Phase II: The object of Project Work II \& Dissertation is to enable the student to extend further the investigative study taken up in Project 1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R\&D laboratory/Industry. This is expected to provide a good training for the student(s) in R\&D work and technical leadership. The assignment to normally include:
> In depth study of the topic assigned in the light of the Report prepared under Phasel;
> Review and finalization of the Approach to the Problem relating to the assigned topic;
> Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed;
> Final development of product/process, testing, results, conclusions and future directions;
> Preparing a paper for Conference presentation/Publication in Journals, if possible;
> Preparing a Dissertation in the standard format for being evaluated by the Department;
> Final Presentation before a Committee
Total marks: 150, only CIE, minimum required to pass 75

Interim evaluation, 2 times in the semester by a committee :50
Quality of the report evaluated by the above committee :30
(The evaluation committee comprises HoD or a senior faculty member, Project
coordinator and project supervisor).
Final evaluation by the final evaluation committee :40
(The final evaluation committee comprises Project coordinator, expert from Industry/research Institute and a senior faculty from a sister department. The same committee will conduct Comprehensive for 50 marks).

MINOR

Minor is an additional credential a student may earn if $s /$ he does 20 credits worth of additional learning in a discipline other than her/his major discipline of B.Tech. degree. The objective is to permit a student to customize their Engineering degree to suit their specific interests. Upon completion of an Engineering Minor, a student will be better equipped to perform interdisciplinary research and will be better employable. Engineering Minors allow a student to gain interdisciplinary experience and exposure to concepts and perspectives that may not be a part of their major degree programs.

The academic units offering minors in their discipline will prescribe the set of courses and/or other activities like projects necessary for earning a minor in that discipline. A specialist basket of 3-6 courses is identified for each Minor. Each basket may rest on one or more foundation courses. A basket may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. S/he accumulates credits by registering for the required courses, and if the requirements for a particular minor are met within the time limit for the course, the minor will be awarded. This will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx with Minor in yyy". The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, that minor will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from third to eight semesters for all branches. The minor courses shall be identified by \mathbf{M} slot courses.
(ii) Registration is permitted for Minor at the beginning of third semester. Total credits required is 182 ($162+20$ credits from value added courses)
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for minor, of which one course shall be a mini project based on the chosen area. They can do miniproject either in S 7 or in S 8 . The remaining 8 credits could be acquired by undergoing 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Minor shall be conducted along with regular classes and no extra time shall be required for conducting the courses.
(iv) There won't be any supplementary examination for the courses chosen for Minor.
(v) On completion of the program, "Bachelor of Technology in xxx with Minor in yyy" will be awarded.
(vi) The registration for minor program will commence from semester 3 and the all academic units offering minors in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 baskets. The basket of courses may have sequences within it, i.e., advanced courses may rest on basic courses in the basket. Reshuffling of courses between various baskets will not be allowed. In any case, they should carry out a mini project based on the chosen area in S7 or S8. Students who have registered for B.Tech Minor in ROBOTICS AND AUTOMATION can opt to study the courses listed below:

Semester	BASKET I			
	Course No.	Course Name	HOURS	CREDIT
	RAT281	BASICS OF ROBOTICS	4	4
S4	RAT 282	INTRODUCTION TO INDUSTRIAL AUTOMATION	4	4
S5	RAT 381	AI AND MACHINE LEARNING FOR ROBOTICS	4	4
S6	RAT 382	INTRODUCTION TO MOBILE ROBOTICS	4	4
S7	RAD 481	MINIPROJECT	4	4
S8	RAD 482	MINIPROJECT	4	4

HONOURS

Honours is an additional credential a student may earn if $s / h e$ opts for the extra 20 credits needed for this in her/his own discipline. Honours is not indicative of class. KTU is providing
this option for academically extra brilliant students to acquire Honours. Honours is intended for a student to gain expertise/specialise in an area inside his/her major B.Tech discipline and to enrich knowledge in emerging/advanced areas in the branch of engineering concerned. It is particularly suited for students aiming to pursue higher studies. Upon completion of Honours, a student will be better equipped to perform research in her/his branch of engineering. On successful accumulation of credits at the end of the programme, this will be mentioned in the Degree Certificate as "Bachelor of Technology in xxx, with Honours." The fact will also be reflected in the consolidated grade card, along with the list of courses taken. If one specified course cannot be earned during the course of the programme, Honours will not be awarded. The individual course credits earned, however, will be reflected in the consolidated grade card.

The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. The internal evaluation, examination and grading shall be exactly as for other mandatory courses. The Honours courses shall be identified by H slot courses.
(i) The curriculum/syllabus committee/BoS shall prepare syllabus for courses to be included in the curriculum from fourth to eight semesters for all branches. The honours courses shall be identified by H slot courses.
(ii) Registration is permitted for Honours at the beginning of fourth semester. Total credits required is 182 ($162+20$ credits from value added courses).
(iii) Out of the 20 Credits, 12 credits shall be earned by undergoing a minimum of three courses listed in the curriculum for honours, of which one course shall be a mini project based on the chosen area. The remaining 8 credits could be acquired through 2 MOOCs recommended by the Board of studies and approved by the Academic Council or through courses listed in the curriculum. The classes for Honours shall be conducted along with regular classes and no extra time shall be required for conducting the courses. The students should earn a grade of ' C ' or better for all courses under honours.
(iv) There won't be any supplementary examination for the courses chosen for honours.
(v) On successful accumulation of credits at the end of the programme, "Bachelor of Technology in xxx, with Honours" will be awarded if overall CGPA is greater than or equal to 8.5 , earned a grade of ' C ' or better for all courses chosen for honours and without any history of ' F ' Grade.
(vi) The registration for honours program will commence from semester 4 and the all academic units offering honours in their discipline should prescribe set of such courses. The courses shall be grouped into maximum of 3 groups, each group representing a particular specialization in the branch. The students shall select
only the courses from same group in all semesters. It means that the specialization is to be fixed by the student and cannot be changed subsequently. In any case, they should carry out a mini project based on the chosen area in S8. For example: Students who have registered for B.Tech Honours in ROBOTICS \& AUTOMATION can opt to study the courses listed below:

INDUCTION PROGRAM

There will be three weeks induction program for first semester students. It is a unique three-week immersion Foundation Programme designed especially for the fresher's which includes a wide range of activities right from workshops, lectures and seminars to sports tournaments, social work and much more. The programme is designed to mould students into well-rounded individuals, aware and sensitized to local and global conditions and foster their creativity, inculcate values and ethics, and help students to discover their passion. Foundation Programme also serves as a platform for the fresher's to interact with their batchmates and seniors and start working as a team with them. The program is structured around the following five themes:

The programme is designed keeping in mind the following objectives:

- Values and Ethics: Focus on fostering a strong sense of ethical judgment and moral fortitude.
- Creativity: Provide channels to exhibit and develop individual creativity by expressing themselves through art, craft, music, singing, media, dramatics, and other creative activities.
- Leadership, Communication and Teamwork: Develop a culture of teamwork and group communication.
- Social Awareness: Nurture a deeper understanding of the local and global world and our place in at as concerned citizens of the world.
- Physical Activities \& Sports: Engage students in sports and physical activity to ensure healthy physical and mental growth.

